Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Herein we report the MoO2Dipic promoted sulfonation of alkenes using N−Ts‐hydroxylamine as the quantitative source of Ts. The reaction works with high yields and stereoselectivities for styrenes with a wide variety of substitution patterns. A novel atom transfer radical addition mechanism involving the formation of molybdooxaziridine complex1as the active catalyst, difunctionalization withTs‐NO, followed by oxidation, and then elimination as the rate‐determining‐step for the formation of vinylsulfone3has been proposed. Initial kinetic and mechanistic data indicates the formation ofTs‐NOand provides evidence for the proposed mechanism.more » « lessFree, publicly-accessible full text available March 17, 2026
-
Engineering design thinking has become an important part of the educational discussion for both researchers and practitioners. Colleges and universities seek to graduate engineering students who can engage in the complex nature of combining both technical performance with design thinking skills. Prior research has shown that design thinking can be a solution for solving complicated technical and social issues in a holistic, adaptive way. However, little is known about how students make sense of their design thinking experiences and reconcile that into their perceptions of what it means to be a successful engineer. As part of a five-year National Science Foundation REvolutionizing Engineering and Computer Science Departments (NSF-RED) grant, this study highlights the experiences of students engaged in a course which has been redesigned to enhance student development through design thinking pedagogy. This case study sought to understand how electrical, computer, and software engineering students engage with design thinking and how that engagement shapes their perceptions of what success looks like. The case study was informed through observations of lecture and lab classroom contexts, interviews with students, and a review of relevant course documents. Participants met the following criteria: (a) were over the age of 18, (b) majoring in CES engineering, and (c) were currently enrolled in one of two courses currently undergoing redesign: a second-year electrical engineering course called Circuits or a second-year computer engineering course called Embedded Systems. Preliminary findings reveal that students engaged in the design thinking course described a disconnect between design thinking elements of the course and their perceptions of what it meant to be a successful electrical, computer, or software engineer. Although design thinking concepts focused on empathy-building and customer needs, it was often difficult for engineering students to see beyond the technical content of their course and conceptualize elements of design thinking as essential to their successful performance as engineers. This study bears significance to practitioners and researchers interested in (re)designing curriculum to meet the growing needs of innovation for today’s customer’s. Implications for policy and practice will be discussed to enhance the way that engineering programs, curricula, and workforce training are created.more » « less
-
Abstract Circular supply chains require more accurate product labeling and traceability. In the apparel industry, product life cycle management is hampered in part by inaccurate, poorly readable, and detachable standard care labels. Instead, this article seeks to enable a labeling system capable of being integrated into the fabric itself, intrinsically recyclable, low‐cost, encodes information, and allows rapid readout after years of normal use. In this work, all‐polymer photonic crystals are designed and then fabricated by thermal drawing with >100 layers having sub‐micrometer individual thickness and low refractive index contrast (Δn = 0.1). The fibers exhibit reflectance features in the 1–5.5 µm wavelength range, characterized using insitu Fourier transform infrared spectroscopy. Drawn photonic fibers are then woven into fabrics, characterized by near‐infrared spectroscopy and short‐wave infrared imaging, techniques commonly used in industrial facilities for sorting materials. The fibers’ optical design also enables the use of overtone peaks to avoid overlap with parasitic molecular absorption, substantially improving the signal‐to‐noise ratio (and therefore ease and speed) of readout. The ability to produce kilometers of fiber that are compatible with existing textile manufacturing processes, coupled with low input material cost, make these a potential market‐viable improvement over the standard care label.more » « less
-
As concerns about the preparation of engineers grow, so has interest in the dimensions of engineering identity. By having a thorough understanding of engineering identity, departments will be better able to produce engineers who understand their role as a member of the profession. Generally, engineering identity literature has not focused on specific disciplinary identities, instead looking at engineering as a whole. Previous literature has utilized role identity theory (e.g., Gee, 2001) and identified key dimensions of engineering identity, including one’s performance/competence and interest in engineering courses and recognition as a current/future engineer (Godwin, 2016; Godwin et al., 2013; Godwin et al., 2016). This paper deepens our understanding of electrical and computer engineering identities. As part of research activities associated with National Science Foundation grant looking at professional formation of socio-technically minded students, we analyzed texts and documents from an electrical and computer engineering department to examine the department’s professed priorities. Using document analysis, we answered this research question: How is a department’s commitment to undergraduate engineering identity development expressed in departmental documents? Document analysis focuses on texts to describe some aspect of the social world (Bowen, 2009). This analysis was performed with two types of departmental documents: front-facing documents (e.g., websites, newsletters) and internal documents (e.g., ABET self-studies, program evaluations) from an electrical and computing engineering department at a public research university. Analysis employed a priori and emergent coding schemas to formulate themes related to identity, performance/capability, interest, and recognition present in departmental documents (Bowen, 2009; Godwin, 2016). Specifically, we skimmed documents to ascertain inclusion status; read and coded documents in depth; and identified broader themes across documents (Bowen, 2009). One broad theme was a lack of attention to identity; another showed emphasis on technical skills/competencies. By interrogating absences, we found that there is little attention being paid to identity development or its components in these documents. In other words, these texts do not indicate that the department is invested in supporting students’ senses of interest, performance, and recognition as electrical and computer engineers. Rather, we found that these texts emphasize the acquisition of specific concepts, skills, and competencies. Overall, analysis indicated that the department does not cultivate holistic engineering student identities. The resultant implications are by no means irrelevant—a focus on identity over specific skills could increase retention, increase student satisfaction, and produce better future engineers.more » « less
-
This qualitative case study explored how undergraduate student perceptions of design thinking pedagogy influence computer, electrical, and software engineering identity. The study found that design thinking pedagogy reinforces recognition of an engineering identity, particularly for those from historically marginalized groups (i.e., women, people of color). Intentional implementation, including organization and framing of design thinking pedagogy, was an important foundation to foster student interest in the course and connection to their role as an engineer.more » « less
An official website of the United States government
